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Abstract: - This paper deals with the problem of modelling and monitoring the fault-free states of an industrial 
process without complete knowledge about the entire machine components. The aim thereby is to automatically 
detect the deviations in performance as fault symptoms. For that type of data-based modelling, the algorithms 
of clustering are selected with an emphasis on the computational load and application complexity. Kohonen 
neural networks (self-organizing maps) are found suitable for the task due to the ability to efficiently operate on 
high dimensional data and because of their robustness against uncertainties. They reveal drawbacks from the 
perspective of identifying the deviating variable in the input space. A novel structure is designed to solve this 
dilemma by combining multi one-dimensional domains and their statistical relationships, where Kohonen and 
Bayesian algorithms would be directly applicable. The structure is introduced and applied to simulate the 
human supervisors in the way of learning normal operation and hence, attempts to automatically identify the 
deviating variable in a high amount of data. An example application is proposed for detecting the wear 
degradation fault in a real electrohydraulic drive that widely used in many industrial machines. The algorithm 
can be realized locally or integrated remotely in cloud architectures.   

Key-Words: - condition monitoring, unsupervised machine learning, self-organizing maps, abnormality isolator, 
artificial neural networks, fault detections. 

  

1 Introduction 
Modern machines demand more smartness, 
usability and profitability. The application of 
machine learning (ML) algorithms in condition 
monitoring (CM) modules is a milestone towards 
these aims. ML is defined as “automatic computing 
based on logical and binary operations to learn 
tasks and exploit facts from examples” [1]. ML 
techniques can be categorized into supervised and 
unsupervised paradigms based on the learning form. 
The supervised ML is widely applied for tasks such 
as pattern recognition and time series predictions. 
The authors in [17], [5], [20] proposed the 
supervised ML to identify defects. The training data 
are typically gained through operation with injected 
faults; then a model is trained to classify the 
patterns assigned to each fault, as a class label. A 
popular algorithm is the feed forward artificial 
neural networks (FF-ANN). The output of the FF-
ANN is bounded by the trained cases and the 
drawback of this, is incorrect classification by fault 

patterns that are not included in the training set. 
Therefore, the training data must contain all 
possible fault patterns in advance as in /31/ .This is 
practically hard to realize in CM problems as many 
faulty scenarios are not known practically in 
advance [16]. By the unsupervised ML, no need to 
classify the training data by labels and it is not 
necessary to include all possible faulty cases in the 
training data sets. The algorithms can automatically 
detect an anomaly based on the learned normal (i.e. 
fault-free) patterns. The abnormality is regarded in 
the data as a deviation or in other words, possible 
fault symptoms. The automatic recognition in this 
manner supports human supervisors for 
troubleshooting the cause and eventually adapt 
maintenance plans. For this concern, the related 
technique of unsupervised ML is data clustering 
which is defined as: “an unsupervised learning 
approach, directly exploiting regularities in the 
data to be analyzed, that builds a higher level 
representation to be used for reasoning or 
prediction.” [2]. Comparing all clustering algorithm 
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is beyond the scope of the paper. In [19], a large 
number of clustering algorithms are outlined and 
compared. 

2 Kohonen Self Organizing Maps  
2.1 Conventional Algorithm 
Self-Organizing Maps (SOMs) are a special type of 
ANN that is suitable for clustering data and vector 
quantisation [12]. Each cluster could be interpreted 
as a local model. In the concern of CM, the data are 
collected from various machine components and 
hence are usually multivariate. Consider an input 
vector  of  variables that is gained during 
healthy operation: 

, , , …  (1)

By clustering using conventional SOMs, a model 
 is associated with cluster  as depicted in Fig. 1. 
. can be expressed as a vector of weights: 

, , , , , , … ,  
(2)

Where ,  is the weight of the input dimension 
	 to the cluster node . A data item will be 

associated into the node whose model is most 
similar to it [13].  
 

 
Fig. 1.  Models associated with the clusters 

The similarity measure is based on the geometrical 
Euclidean distance. The training performs an 
iterative adaption to the weights that takes the 
general form: 

1
 

(3)

	 	 ‖ ‖, : 1 →  
	 min 	  (4)

As  is a learning rate. The subscript  indicates 
the node that has the minimal Euclidean distance, 

 to the input vector	 . The node  is called 
the winner neuron, whose model will be updated to 
be more similar to the training input vector. Due to 
this strategy, the SOMs are called competitive 
networks [11]. SOMs are typically constructed as 

2D topological grids. Other map nodes in the 
neighborhood of  would be updated by a 
function , Eq. (3), as a kind of smoothing 
kernel [13]. A typical use of the neighborhood 
function is the Gaussian [10]. The training is 
performed unsupervised in one of the following 
schemes 
- Sequential Training: Data samples are fed one 

per iteration. The weights are updated 
following each sample 

- Batch Training: The algorithm loops on the 
whole set iteratively, each run is called 
‘epoch’. The weights are updated per epoch. 

After the training is complete, the weights of all the 
nodes, are registered in a matrix called ‘the code 
book’ of the map. The map is then used to estimate 
the winning node, named then as ‘the best match 
unit’ (BMU). The BMU is thus the output of a cost 
function that minimizes the quantization error  , Eq. 
5 

|| || = 

, , … ,
2	 (5)

The domain of BMUs describes the normal fault 
free operation of the target machine. Deviations are 
supposed to result in an increase in the training  
or produce a BMU out of trained normality domain. 
 
2.2 Discussion 
SOMs are generally powerful for clustering high 
dimensional data. In addition, they can be applied 
as a way of black box modelling [7]. Unlike other 
clustering algorithms, they reveal interesting 
characteristics for developing a practical 
methodologies for CM. Kohonen algorithm for 
clustering provides advantages that it maintains two 
features at the same time: 

Feature 1, Application flexibility: The training 
can be carried out in a batch or sequential paradigm 
that requires low computational cost. So it can be 
operate online by PLCs that have limited resources. 
Therefore, the developed functions would be 
potentially applicable in a vast variety of systems. 

Feature 2, Configuration simplicity: Human 
operators do not have precise knowledge in advance 
about the nature of the data or/and the number of 
the clusters.The SOM grid nodes do not necessarily 
have to be fully assigned to data points. Empty 
nodes are found frequently in such networks 
without claims on performance or accuracy. 
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Therefore, the definition of the exact number of 
cluster nods is not a prerequisite.  
On the other hand, the conventional algorithm 
reveals drawbacks in the way of fault detections: 

 Probably incorrect monitoring. The 
mechanism of estimating the similarity of a 
faulty multivariate state may result in an 
equivalent  as noa rmal one, Eq. 5. 

 No possibility to identify, i.e. isolate, the 
deviating variable ̂	 in the input vector. 
Therefore, no aid for further diagnostics. 
 

3 Anomaly Isolation 
To maintain the unsupervised paradigm and at the 
same time isolate the abnormal variable, it is 
necessary to cluster each dimension by a SOM in a 
separate domain (subgrid). Each domain is assigned 
to one variable. The nodes from the subgrids must 
be related together or, in other words, linked, to 
maintain the description of high dimensionality. 
The suggested linking is based on the probability of 
the nodes matching events along with all 
dimensions. The coupling takes the form of an 
additional layer that can be used to learn the 
probability of the nodes matching events, BMU 
Hits, and the joint probability of the hit events in 
between the subgrids.  
The proposed training is divided into two stages, 
Fig. 2. 
Stage1: The conventional Kohonen algorithm is 
used to train the 1D SOMs either in batch or 
sequential training with the target to lower  
below a predefined limit , . The limit 
definition differs according to the physical 
relevance of each variable and the target clustering 
accuracy. 

 

 
Fig. 2. Training stages 

Stage2: The 1D SOMs are used to emit the BMUs 
by reusing similar training data set as in stage 1. For 
each observation vector, a vector of BMUs is 
emitted and registered in a matrix Ω for the rest of 
the training data set. Ω is then used to estimate the 
joint and conditional probability. For arbitrary 

variable	 , the hits of BMUs can be resolved as a 
random process having discrete events 

 	 ∈ , , , , … , 	 

As  is the number of the BMUs of trained _ . 
The probabilistic space of that process is therefore 
abstract and, within which, the events are mutually 
exclusive since only one outcomes and no 
overlapping is permitted [14]. Furthermore, the hits 
are exhaustive since their probabilities cover the 
whole probabilistic space. Let A denotes the ,  
hit event from _  and B denotes the 
corresponding hit event ,  for an adjacent 

_ .The conditional probabilities of A given B, 
where	 0, 0, is given in [14] by  

|
∩

	
|

 (6)

The term ∩  is the joint probability that both 
events are happening. If either  or	 0, 
then the events are described to be independent 
[14]. If both probabilities are nonzero then t,hey 
reveal independencies if one of the conditions is 
satisfied   

| , or |  
In this case, the following equation holds 

∩  (7)

 
Fig. 3. Structure of the abnormality isolator 
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The probability of hitting certain groups of SOM 
nodes, each in a specific domain, is dependent on 
the collected data from the operation of the physical 
system. Non-hit grid nodes would have a negligibly 
low hit probability and therefore reveal statistical 
independence. We can conclude that the statistical 
relationships have physical relevance and can be 
therefore potentially used for CM. The relationships 
can be represented graphically as in Bayesian 
Networks (BN) or in abstract form, using Markov 
chains that can effectively determine the most likely 
sequence of numeric values, provided that the BMU 
events are introduced in sequential vectors of 
samples [4].  
 
Fig. 3 depicts the proposed structure of the 
Abnormality Isolator (AbIso). A finite number of 
1D SOMs on the right-hand side is intended to 
cluster each variable. The number of the grids and 
the input dimension is therefore identical. The most 
suitable topology of the grids in this case, is straight 
lines with lattice in form of rectangles. 

 is the number of nodes (clusters) in each grid. It 
is not necessary that all subgrids have the same size. 
The subgrids can be initialized either randomly or 
linearly as the min and max limit can be estimated 
from the training data set or the operational limits. 
The probabilistic linkages are initialized by zero. 
Regarding the CM problem, the variables‘ values 
are physically bounded to the performance nominal 
and maximum limitations so that the usual 
procedure for determining 	heuristically can be 
improved.  
The parameters for the AbIso are listed as:  
	  : T raining length to converge 

  - Max number of training epochs for batch training. 
- Max number of samples for sequential training. 

, 		: Allowed clustering error (tolerance) 

 :  Learning rate 
 : Neighbourhood function, the Gaussian function is 
selected by default 

  : Neighbourhood radius in number of grid nodes (= 1 
by default) 

Only the nodes whose hit probabilities as BMU are 
nonzero are registered in Ω, each variable occupies 
a column, and each observation, from the raw data 
feed, results in only one row. At the end of the 
training, the conditional probability can be 
estimated based on Ω, Fig. 3. Each BMU from the 
subgrids possesses the properties: 

 The event hit probability for itself 

 A finite number of connections to adjacent 
nodes in other layers 

The connections are weighed by the estimated 
conditional probability for later utilization in CM 
modules. For isolation purposes, this step is 
established pairwise, so that the most likely chain 
combinations of BMUs are drawn and otherwise is 
assumed to be abnormal. 
The classical SOM nodes represent an integral 
model of the data [7] in contrast to the procedure 
followed here. An operational point is represented 
by a prototype that consists of a set of BMUs from 
subdomains and statistical weighting of the hits. 
Therefore, the AbIso enables the anomaly 
detections in 2 levels of monitoring:  
- Level 1, Values local ranges:  exceeds the 

grid training error. Each subgrid enables “out of 
range” detections of the variable,  that it 
clusters or the clustering node has a low hit 
probability of being a BMU as trained. 

- Level 2, Relational mismatch: The hit BMU 
does not correspond to subsequent nodes in the 
adjacent grids. This enables estimating the 
irregularity in operation even if all single 
variables values are drawn as normal (output 
from level 1).  

 

4 Case Study 
The concept is applied for the problem of detecting 
wear fault in hydrostatic pumps as a result of 
degradation effects. 
 
4.1 Speed Variable Pump Drives 
Speed variable pumping drives (SvPs) were 
recently developed essentially to improve energy 
efficiency in hydraulic systems [15]. These drives 
operate to control the pressure in a closed loop 
control scheme, Fig. 4. The controller varies the 
speed set point of an electro servo motor that drives 
a hydrostatic pump. The pump influences the output 
flow rate and, in turn, lower or increase the system 
pressure [18]. SvPs are used typically for pressure 
control tasks instead of servo valves. The system 
pressure is taken as the feedback control state, and 
the speed would be the controller output variable. 
This type of drives is used in many modern 
industrial applications such as plastic injection & 
moulding machines (IMMs).  
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Fig. 4.  Typical SvP drive 

The three main variables to define an operational 
point are system pressure , motor speed  and 
torque . The pressure set points / traces differ 
according to the rest of the hydraulic system and the 
operating process. In addition, the conditions of the 
fluid varies sharply depending on the environmental 
effects such as temperature. 
An essential aspect for CM tasks is the natural 
variance in the state variables depending on the 
environmental effects besides the loading 
conditions. This issue makes the threshold 
definition hard to set and predict. Fig. 5 depicts SvP 
operation points at typical IMM cycle [18]. The 
graphs show data from healthy operation in 
different environmental conditions.  

 
Fig. 5. 	 	operational points of SvP, steady states 

4.2 Applying the Monitoring Model 
The state variables reveal discontinuous domains 
that can be directly modelled by the 1D SOMs. The 
number of the nodes are defined normally in 
heuristic manner [12]. We propose to select the 
number of nodes in relationship to the nominal 
limits of the variables, by the equation : 

	 	
/  

(8)

 
For this example case, the nominal values and the 
tolerances are set outgoing from the standards in [8] 
as follows in Table 1. 

TABLE 1    Variables Tolerances  

Variable 
Nominal 
limits 

Tolerance 
[%] 

Tolerance 
,  

Approx. 
No. of 
Nodes,
.  

Pressure 
315 
[bar] 1 3.15 20 

Speed 
3000 
[rpm] 

1 :1.5 30 20 

Torque 
100 
[Nm] 1 1 20 

 
The software tool in [10] is used for training the 
SOMs. The data are collected for 3000 IMM cycles 
of operation and the training proceeds in batch 
form. The training parameters are summarised in 
Table 2. 

 
Fig. 6. SOMs for the state variables n, p,M 

The resulted SOMs are represented graphically in 
Fig. 6. where the size of the red points signalises the 
hit probability. 

TABLE 2     SOMS  Design and Training Results 

Item _  _  _  

State Variable          Pressure 
[bar] 

Speed 
[rpm] 

Torque 
[Nm] 

Input dimension      1 1 1 

Map grid size           20 x 1 20 x 1 20 x 1 

Lattice type (rect/ 
hexa)               

rect rect rect 
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Shape 
(sheet/cyl/toroid)     

sheet sheet sheet 

Neighbourhood 
type                      

Gaussian Gaussian Gaussian 

Mask                        - - - 

Training status         initialized, 
trained 15 
times 

initialized, 
trained 25 
times 

initialized, 
trained 30 
times 

Average  0.0385 0.1589 0.2655 

  1.3354 6.1622 1.5996 

 
In Fig. 7 the statistical interrelationships are drawn, 
the size of the squares is proportional to the joint 
probability that both indexed nodes in the SOMs are 
hit as BMUs. The third graph of the nodes of speed 
and torque SOMs is not included in the example as 
it has no add-value for the target fault detection. 

 
 

 
Fig. 7. BMU probabilities (p-n , p-M), 20 nodes  

4.3 Degradation Fault Scenario  
The AbIso is trained as explained in the last 
sections to learn the normal fault-free distributions 
of the data of SvP. The most sensitive component to 
fluid conditions and loading is the pump, whose 
volumetric efficiency decreases as a result of 
degradation wear. The fault can be simulated on a 

test rig by inserting an external leakage. Form the 
systematic point of view; the additional leakage acts 
as a disturbance on the control loops so that the 
speed demand to maintain the same pressure levels 
differs correspondingly. See Fig. 8 for the traces of 
the speed at a pressure set point = 100 [bar]. 
 

 
Fig. 8. Speed traces in normal and faulty operation, 100 [bar] 

The detection is successfully done in the monitoring 
level 1,  of the BMU in _  increases 
remarkably, Table 3. 

TABLE 3  Comparison for Fault Detections  

Although the detection in level 1 is sufficient for  

Item Normal Faulty 

_  , Node 6 6 

_  1.151 1.063 

_ , Node 3 3 

_  4.278 7.873 

- Input vector : , , 	 
- Calculate the array of BMUs, 	 	 _ , _ , _ in 

_ , _ , _   
- Register the respective 	array 

_________Level 1 Monitoring __________ 
- For i = 1: 3 do  

If  >   then 
 Abnormality detected in domain	  
  {pressure, speed, torque} 

End_if  
    End_for  

_________ Level 2 Monitoring __________ 
- If _  ∉  _  then  

Abnormal pressure level  
Else 

Extract 	 _  where | _  > 0 
If 	 	  then  

No match  Abnormal speed point 
Else 

Extract 1	 _  where 1 _
0 

Extract 2	 _  where 2| _
0 

If 1⋂ 2 	  (no common elements) 
   No match  Abnormal torque demand 

End_if  
End_ if 

End_if  
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this case, a demonstration of level 2 is helpful to 
explore the working principle of the whole 
procedure. The statistical relationship can be 
calculated pairwise from the hits probability as 
outlined before. We construct the model flow on the 
basis of the physical dependencies of the variables. 
A key variable is the control state, system pressure 
p, and the speed demand is related to it. The motor 
torque is dependent on both. The sequence of 
checking the combinations starts from estimating 
the BMUs of the three subgrids. Assume the 
training output is _ , _ , _  , 

 vector , the statistical relationships between 
the BMUs. The monitoring algorithm is outlined as 
follows: 

5 Automatic Identification of Steady 
States 

In the controlled operation, the process reveals 
transient and steady states (SS) of the controlled 
variable. An additional module to automatically 
distinguish the steady portions in the measurements 
aims to simplify and localise the CM functions. The 
automatic identification of the steady states is the 
core point in the research works [3], [6], [9] in 
different degrees of complexity. The difficulties 
here lay in the parametrization and the capability to 
run online. The straightforward concept of 
observing the control difference (command – actual 
state) is not suitable as for cases such as SvP; the 
drive may examine speed or torque limitations. In 
this work, an online steady state identifier (OSSI) is 
designed to simplify the identification using only 
the actual state signal. The basic idea is based on 
the convergence of the statistical variance around 
the moving mean of the discrete values stream. 
The moving mean filtering for a discrete signal  
is written as follows 

̅
1

 
(10)

 
Moreover, the moving variance  would be 

1
̅  (11) 

The steady state can be therefore identified using 
the tolerances in Table I as a threshold   

| ̅ |
| ̅ 	|

% 	 			, ̅ 	 0	 
(12) 

 

 
Fig. 9. Simulink discrete model for the OSSI 

A suggested realisation is depicted in Fig. 9. This 
design requires only two parameters, : Filter order, 
and : Steady state tolerance (= std_SS in the 
Simulink model). 

 
Fig. 10. Steady state identification for a 2nd order system 

The value of 	  is the key parameter of the damping 
of fluctuations in the OSSI. Throughout the study, 
the value 	  =100 produces acceptable results. Fig. 
10 depicts a test case of operation with a 2nd order 
stable system. The theory of operation of the OSSI 
encounters time delays and impulses during 
initialization, but for the aim of CM, the functions 
intend to extract long temporal portions; the 
following step would be features generation of the 
extracted portions, Fig. 8. That can in turn be used 
for the ML model. 
 

6 Discussion and Outlook 
The paper represented a novel structure for anomaly 
isolations. The structure, AbIso, is designed on the 
basis of Kohonen algorithm and it reveals practical 
impacts by a high degree of flexibility and handling 
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simplicity. It can be practically used as a 
generalised framework for CM and troubleshooting 
in many systems. The structure combines one-
dimensional SOMs (subgrids) and relates their 
output statistically. For linking the BMU hit events 
from each subgrid, the fundamental rules of 
probability were sufficient as there are no current 
requirements to infer facts or causalities.  
 The traditional application of SOMs is to cluster 
multi-dimensional data into 2D gird and not 1D as 
the contribution here. There are many other 
algorithms for 1D clustering. Gaussian mixture 
models and the radial basis ANNs can be used to 
learn continuous 1D data distributions. In the case 
of 1D discrete clustering, histogram algorithms are 
popular and efficient. SOM algorithm is chosen as 
it is suitable for discrete distributions and it does 
not require an exact predefinition of the number of 
clusters, besides the capability to perform 
sequential training. The sequential way of learning 
saves resources and computational load. 
Furthermore, the common task of normalizing each 
variable in the input space is no longer required. For 
multi-dimensional SOMs, normalization should not 
be omitted. Otherwise, input variables with high-
value ranges would dominate the clustering nodes 
so that other low valued variables may have no 
influence on the clustering results. 
The AbIso detects the anomaly in two levels by first 
comparing the quantisation error to the normal 
ranges in each subgrid, and then checks the BMU 
combination plausibility in level 2. There is no 
expected restriction on the number of input 
variables other than the increasing computational 
complexity, especially in the side of the statistical 
model.  
An example case of degradation fault in speed 
variable hydrostatic pumps is demonstrated. The 
task used only three variables for CM and aimed to 
recognise the anomaly automatically. The isolated 
anomaly can be generally combined with expert 
knowledge so that a meaningful diagnosis is gained 
at the end. In this example, an excessive speed 
demand is detected because of degradation wear in 
the hydraulic pump. Other cases and applications in 
different fields and scales are left for future work. 
Monitoring the features of the transient portions in 
signals may lead to undesired alarms. An automatic 
procedure to detect the steady states in the input 
signals is designed to switch the monitoring on/off 
and therefore; enhance the handling and support the 
concept of the low supervision demands. A 

simplified and practical method is introduced based 
on the online estimation of the statistical variance. 
Bayesian Networks (BNs) are a known technique 
for visualizing complex statistical structures of 
random variables and extract causality for reasoning 
purposes. These Networks are widely applied in the 
field of reliability and diagnosis [21] as the BNs 
permit the integration of human knowledge in 
addition to the dependencies extracted from the 
observations in the datasets [4]. A suggestion for 
future works is to model the anomaly occurrences 
in temporal sequence and study their relationships 
to machine component failures in a global Bayesian 
diagnostics approach. The benefit beyond this is to 
gain a basis for fault predictions and therefore a ML 
model for the aim of adapting maintenance plans.  
 
Acknowledgement: 

The authors are grateful to the German Federal 
Ministry of Education and Research (BMBF) for 
funding the presented experimental work. The 
project ‘MultiCloud’ has funding code 02K14A063. 
Responsibility for the contents of this publication 
rests with the authors. 
 
References: 

[1] Aldrich, C. and Auret, L. 2013. Unsupervised 
process monitoring and fault diagnosis with 
machine learning methods. Advances in 
computer vision and pattern recognition,  2191-
6586. 

[2] Alhajj, R. S. 2014. Encyclopedia of social 
network analysis and mining. Springer, New 
York. 

[3] Cao, S. and Rhinehart, R. R. 1995. An efficient 
method for on-line identification of steady 
state. Journal of Process Control 5, 6, 363–
374. 

[4] Du, K.-L. And Swamy, M. N. S. 2014. Neural 
networks and statistical learning. Springer, 
London. 

[5] El-Betar A. et al. 2006. Fault Diagnosis of a 
Hydraulic Power System Using an Artificial 
Neural Network. JKAU: Eng. Sci. 17, 117–
137. 

[6] Fernandes G. et al., Ed. 2012. Automated 
Method for Recognizing Steady State Intervals 
on The Series in Gas Turbines Test Bench 1, 
Spain. 

[7] Isermann, R. and Balle, P. 1997. Trends in the 
Application of Model-Based Fault Detection 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Emad Ali

E-ISSN: 2224-266X 204 Volume 18, 2019



 

 

and Diagnosis of Technical-processes. Control 
Eng. Practice 5, 709–719. 

[8] Ivantysyn, J. and Ivantysynova, M. 2003. 
Hydrostatic pumps and motors. Principles, 
design, performance, modelling, analysis, 
control and testing /  Jaroslav Ivantysyn and 
Monika Ivantysynova. Tech Books 
International, New Delhi. 

[9] Jiang, T. e. a. 2003. Application of steady-state 
detection method based on wavelet transform. 
Computers & Chemical Engineering 27, 4, 
569–578. 

[10] Kohonen, T. SOM Toolbox 2.0. http://
www.cis.hut.fi/projects/somtoolbox/. Accessed 
15 May 2018. 

[11] Kohonen, T. 1998. The self-organizing map. 
Neurocomputing 21, 1-3, 1–6. 

[12] Kohonen, T. 2001. Self-organizing maps. 
Springer series in information sciences,  0720-
678X 30. Springer, Berlin, London. 

[13] Kohonen, T. and Honkela, T. 2007. Kohonen 
network. 

[14] Navidi, W. C. 2011. Statistics for engineers 
and scientists. McGraw-Hill, New York. 

[15] Neubert, T. 2002. Untersuchungen von 
drehzahlveränderbaren Pumpen. Dissertation. 

[16] Penman, J. 1994. Feasibility of using 
unsupervised learning, artificial neural 
networks for the condition monitoring of 
electrical machines. IEE Proc., Electr. Power 
Appl. 141, 6, 317. 

[17] Ramdén, T. 1998. Condition monitoring and 
fault diagnosis of fluid power systems. 
Approaches with neural networks and 
parameter identification /  Teresia Ramdén. 
doctoral. 

[18] Ristic, M. 2008. Development of Variable-
speed Drives. IFK. 

[19] Saxena, A. e. a. 2017. A review of clustering 
techniques and developments. Neurocomputing 
267, 664–681. 

[20] Torikka T. 2010. Bewertung von 
Analyseverfahren zur Zustandsüberwachung 
einer Axialkolbenpumpe. doctoral, RWTH 
Aachen. 

[21] Zhou, D. 2014. The Application of Bayesian 
Networks in System Reliability. Master, 
ARIZONA STATE UNIVERSITY. 

 
 
 
 
 
 
 
 
 
 
 
 

 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Emad Ali

E-ISSN: 2224-266X 205 Volume 18, 2019




